您现在的位置:中考深圳站 > 中考备考 > 中考复习 > 中考数学 > 正文
来源:中考网整理 作者:紫涵 2015-03-17 19:28:33
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
2018深圳各区中考录取分数线 | |||||
福田区 | 罗湖区 | 南山区 | 宝安区 | 龙岗区 | 市直属 |
2017深圳各区中考录取分数线 | |||||
福田区 | 罗湖区 | 南山区 | 宝安区 | 龙岗区 | 市直属 |
2023中考一路陪伴同行,百万名校真题直接下载!>>点击查看